

Pistoria Alliance Conference 2024 24th April 2024

Using human genetics & genomics data for systematic drug target identification and prioritisation

> Ellie McDonagh Translational Informatics Director emcdonagh@ebi.ac.uk

Pistoria Alliance Conference 2024 24th April 2024

Using human genetics & genomics data for systematic drug target identification and prioritisation

Ellie McDonagh Translational Informatics Director emcdonagh@ebi.ac.uk

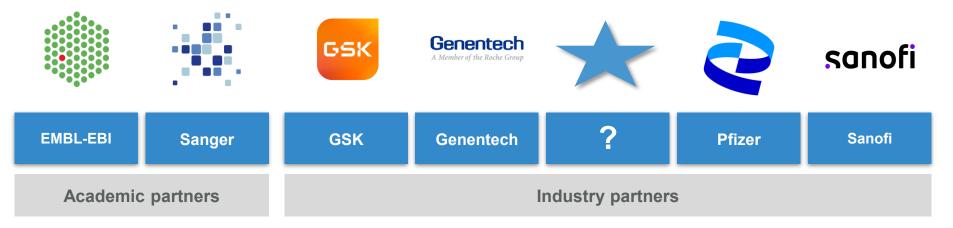
A ANNUAL R REVIEWS

Annual Review of Biomedical Data Science

Human Genetics and Genomics for Drug Target Identification and Prioritization: Open Targets' Perspective

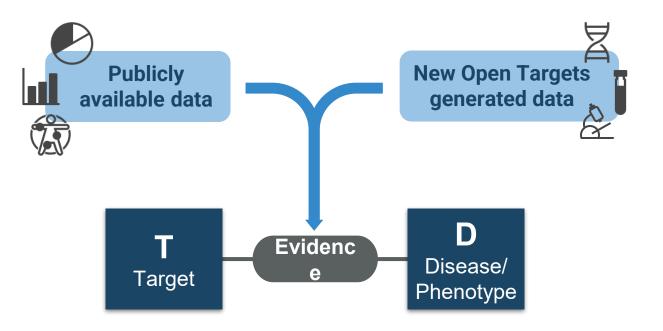
Ellen M. McDonagh,^{1,2,3} Gosia Trynka,^{1,3} Mark McCarthy,⁴ Emily Rose Holzinger,⁵ Shameer Khader,⁶ Nikolina Nakic,⁷ Xinli Hu,⁸ Helena Cornu,^{1,2} Ian Dunham,^{1,2,3} and David Hulcoop^{1,2,3}

¹Open Targets, Wellcome Genome Campas, Hinnton, UK, emili-emedonagh@ebia.cuk ¹Baropean Molecular Biology Laboratory, Earopean Bioinformatics Institute, Wellcome Genome Campus, Hinston, UK ¹Wellcome Sanger Institute, Wellcome Genome Campus, Hinston, UK ⁴Gennetends, South San Francisco, California, USA ³Initical Myers Squibb, Cambridge, Massachusetts, USA ⁵Precision Medicine & Computational Biology, Stanofa, Cambridge, Massachusetts, USA ⁵Initical Myers, SQL, Searce, UK ⁴Infimumation and Immunology, Pfizer Research and Development, Inc., Cambridge, Massachusetts, USA


Pistoria Alliance Conference 2024 24th April 2024

Harnessing AI to expedite R&D: our approach

Ellie McDonagh Translational Informatics Director emcdonagh@ebi.ac.uk


A partnership to transform drug discovery through the systematic identification and prioritisation of targets

Our Approach

We systematically use **evidence** to build therapeutic hypotheses between **targets** and **disease**

The importance of genetic evidence for drug success

The support of human genetic evidence for approved drug indications

Matthew R Nelson¹, Hannah Tipney³, Jeffery L Painter¹, Judong Shen¹, Paola Nicoletti¹, Yufeng Shen^{1,4}, Aris Floratos^{3,4}, Pak Chung Sham^{1,6}, Mulin Jun Li^{6,7}, Junwen Wang^{6,7}, Lon R Cardon⁸, John C Whittaker² & Philippe Sansea¹²

Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval.

Emily A King, J Wade Davis, Jacob F Degner doi: https://doi.org/10.1101/513945

This article is a preprint and has not been peer-reviewed [what does this mean?]

Drug ~8x more likely to succeed if target identified in Mendelian genetic evidence

 Drug > 2x more likely to succeed if target is supported by GWAS evidence

Nelson MR et al, (2015) Nat Genet.
Aug;47(8):856-60.
King EA et al, (2019). PLoS Genet. Dec 12;15(12):e1008489.

The importance of genetic evidence for drug success

The support of human genetic evidence for approved drug indications

Matthew R Nelson¹, Hannah Tipney³, Jeffery L Painter¹, Judong Shen¹, Paola Nicoletti³, Yufeng Shen^{3,4}, Aris Floratos^{3,4}, Pak Chung Sham^{5,6}, Mulin Jun Li^{4,5}, Junwen Wang^{6,7}, Lon R Cardon⁸, John C Whittaker² & Philippe Sanseu³

Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval.


Emily A King, J Wade Davis, Jacob F Degner doi: https://doi.org/10.1101/513945

This article is a preprint and has not been peer-reviewed [what does this mean?]

Drug ~8x more likely to succeed if target identified in Mendelian genetic evidence

Drug > 2x more likely to succeed if target is supported by GWAS evidence

- Nelson MR et al, (2015) Nat Genet. Aug;47(8):856-60.
- King EA et al, (2019). PLoS Genet. Dec 12;15(12):e1008489.

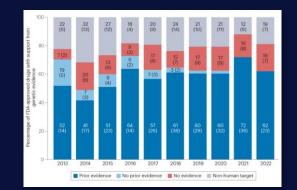
Human genetics evidence supports 2/3 of the 2021 FDAapproved drugs

Genetic evidence supports 63% of new drugs approved in the past decade

- Ochoa D, et al, (2022) *Nat Rev Drug Discov.* Aug;21(8):551.
- Rusina, PV et al. (2023) *Nat Rev Drug Discov.* 2023 Oct.

The importance of genetic evidence for drug success

The support of human genetic evidence for approved drug indications


Matthore R Nelson¹, Hannah Tipney³, Jeffery L Painter¹, Judong Shen¹, Paola Nicoletti³, Yufeng Shen^{3,4}, Aris Horatos^{3,4}, Pak Chung Sham^{5,6}, Mulin Jun Li^{6,7}, Junwen Wang^{6,7}, Lon R Cardon⁸, John C Whittaker² & Philippe Sansea¹

Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval.

Emily A King, J Wade Davis, Jacob F Degner doi: https://doi.org/10.1101/513945

This article is a preprint and has not been peer-reviewed [what does this mean?]

- Drug ~8x more likely to succeed if target identified in Mendelian genetic evidence
- Drug > 2x more likely to succeed if target is supported by GWAS evidence
- Nelson MR et al, (2015) Nat Genet. Aug;47(8):856-60.
- King EA et al, (2019). PLoS Genet. Dec 12;15(12):e1008489.

Human genetics evidence supports 2/3 of the 2021 FDAapproved drugs

- Genetic evidence supports 63% of new drugs approved in the past decade
- Ochoa D, et al, (2022) *Nat Rev Drug Discov.* Aug;21(8):551.
- Rusina, PV et al. (2023) *Nat Rev Drug Discov.* 2023 Oct.

Refining the in clinical succes	npact of genetic evidence on s								
https://doi.org/10.1038/s41586-024-07316-0	Eric Vallabh Minikel ¹ , Jeffery L. Painter ^{2,5} , Coco Chengliang Dong ² & Matthew R. Nelson ^{2,4}								
Received: 5 July 2023									
Accepted: 14 March 2024	The cost of drug discovery and development is driven primarily by failure', with only								
Published online: 17 April 2024	about 10% of clinical programmes eventually receiving approval ²⁻⁴ . We previously estimated that human genetic evidence doubles the success rate from clinical doubles the success rate from clinical doubles are successed as a successed as a success rate from clinical doubles are successed as a success								
Open access									
Check for updates	development to approval ¹ in this study we lowerage the growth in genetic oxid over the past decade to better understand the characteristics that distinguish success and failure. We estimate the probability of success for drug mechanism genetic support 12.6 time systemet runn those without. This relative success among therapy areas and development phases, and improves with line reasing confidence in the causal gene, but is largely unaffected by genetic effect size, and allele frequency or year of discovery. These results indicate we are fur from reterior peak genetic insignation to all the discovery of ratgets for more refercived rungs.								

- Drug mechanisms with genetic support have 2.6 greater probability of success
 - "These results indicate we are far from reaching peak genetic insights to aid the discovery of targets for more effective drugs."

- Minikel, E.V. et al (2024) *Nature* https://doi.org/10.1038/s41586-024-07316-0

The challenge of using GWAS for target discovery?

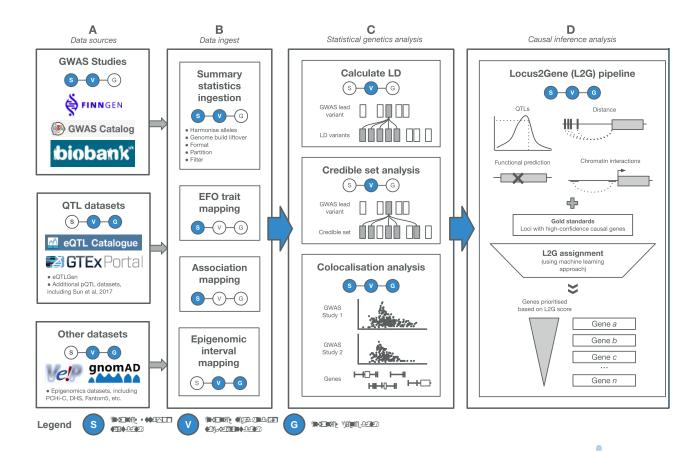
How do you go from a **variant** associated to disease to the **causal gene**?

- Most disease associated variants are outside coding regions
- The **causal gene** is not necessarily the gene closest to the associated variant
- Sometimes variants can affect **several genes**
- The lead variant reported may not be the causal variant

Open Targets Genetics was established to systematically address this challenge

Locus2Gene Machine Learning pipeline

Goal: provide a predictive score for the most likely causative genes underlying each GWAS association


An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci

ARTICLES

Edward Mountjoy ^{© 12}, Ellen M. Schmidt¹², Miguel Carmona¹³, Jeremy Schwartzentruber^{© 1,23}, Gareth Peat^{2,3}, Alfredo Miranda^{2,3}, Luca Fumis¹³, James Hayhurst²³, Annalisa Buniello²³,

Nat Genet **53**, 1527–1533 (2021). PMID: 34711957

nature

Open Targets

Locus2Gene Machine Learning pipeline

Goal: provide a predictive score for the most likely causative genes underlying each GWAS association

Locus2Gene Machine Learning pipeline

Goal: provide a predictive score for the most likely causative genes underlying each GWAS association

An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci

Edward Mountjoy ^{©12}, Ellen M. Schmidt¹³, Miguel Carmona^{2,3}, Jeremy Schwartzentruber ^{©12,3}, Gareth Peat^{2,3}, Alfredo Miranda^{2,3}, Luca Fumis^{2,3}, James Hayhurst^{2,3}, Annalisa Buniello^{2,3},

Nat Genet **53**, 1527–1533 (2021). PMID: 34711957

https://genetics.opentargets.org/

Locus2Gene Machine Learning pipeline

Goal: provide a predictive score for the most likely causative genes underlying each GWAS association

An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci

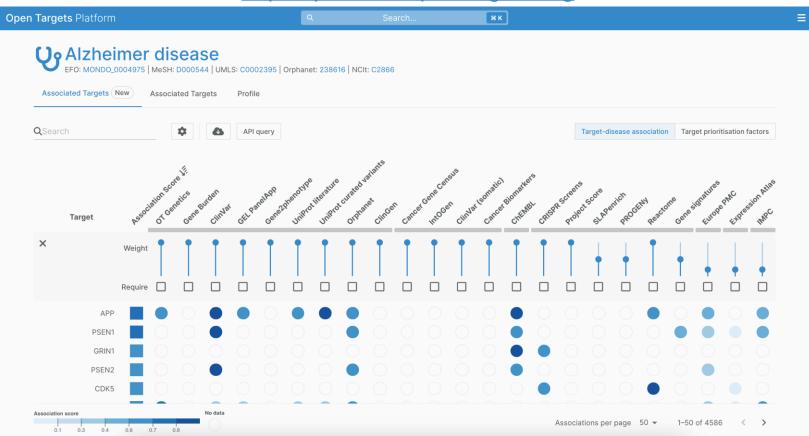
Edward Mountjoy ^{©12}, Ellen M. Schmidt¹³, Miguel Carmona^{2,3}, Jeremy Schwartzentruber ^{©12,3}, Gareth Peat^{2,3}, Alfredo Miranda^{2,3}, Luca Fumis^{2,3}, James Hayhurst^{2,3}, Annalisa Buniello^{2,3},

Nat Genet **53**, 1527–1533 (2021). PMID: 34711957

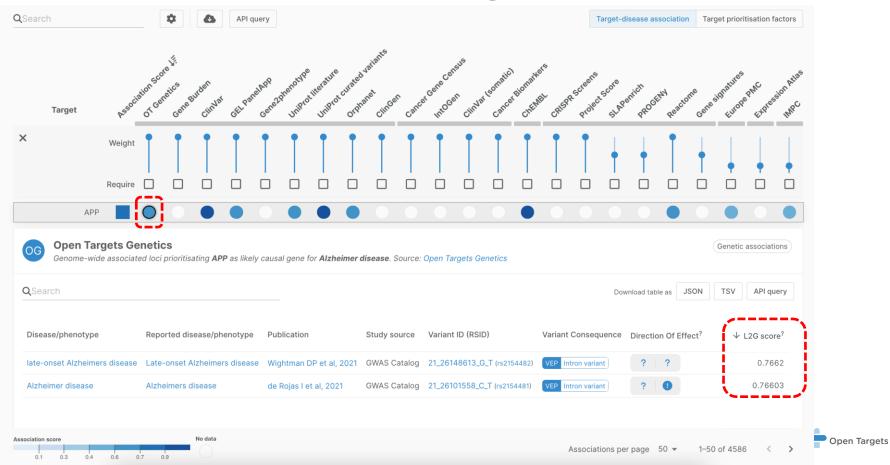
https://genetics.opentargets.org/

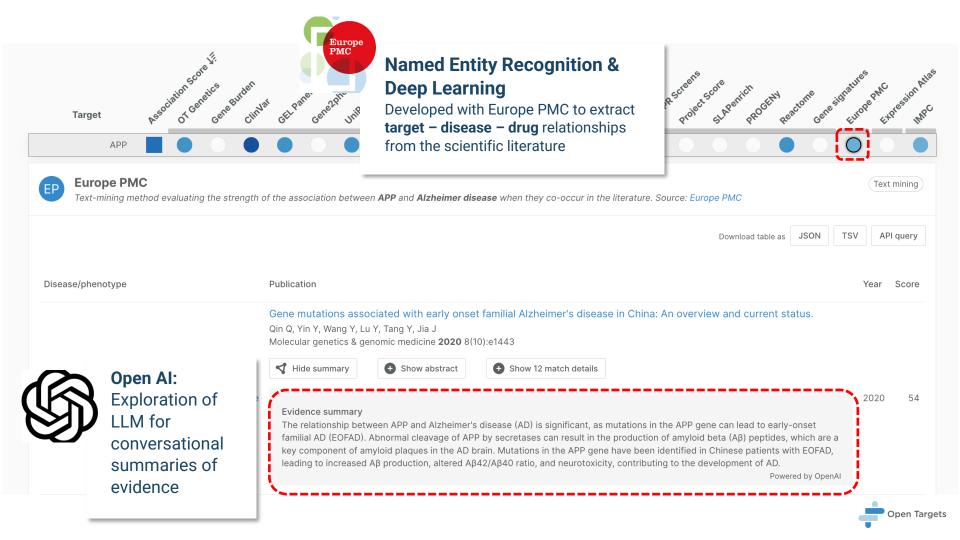
Optimising our pipelines & data

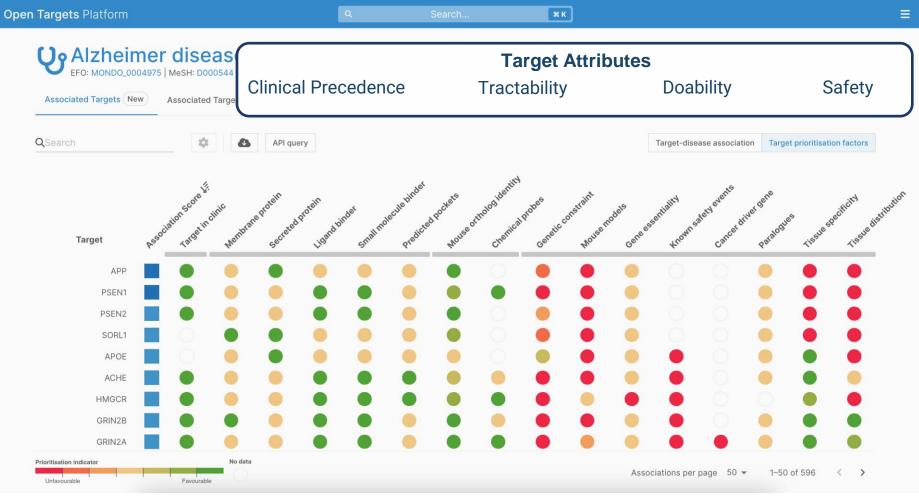
Open Targets Gentropy


opentargets.github.io/gentropy/

Python package for post-GWAS analysis


How do we prioritise the best targets for disease X?


https://platform.opentargets.org



Open Targets

How do we prioritise the best targets for disease X?

Open Targets

Known Drugs

KD

Clinical precedence for drugs with investigational or approved indications targeting APP according to their curated mechanism of action. Source: ChEMBL.

QSearch					Download table as JSON	TSV API query		
Drug information			Disease information					
Drug	Туре	Mechanism Of Action	Action Type	Disease	Phase	Status	Source	
ADUCANUMAB	Antibody	Beta amyloid A4 protein binding agent	Binding agent	Alzheimer disease	Phase IV	N/A	FDA	
TRAMIPROSATE	Small molecule	Beta amyloid A4 protein stabiliser	Binding agent	Cognitive impairment	Phase IV	Recruiting	ClinicalTrials.gov	
TRAMIPROSATE	Small molecule	Beta amyloid A4 protein stabiliser	Binding agent	Alzheimer disease	Phase III	Unknown status	ClinicalTrials.gov	
GANTENERUMAB	Antibody	Beta amyloid A4 protein binding agent	Binding agent	Alzheimer disease	Phase III	Terminated	5 references	
DONANEMAB	Antibody	Beta amyloid A4 protein disrupting agent	Binding agent	Alzheimer disease	Phase III	Recruiting	ClinicalTrials.gov	
CRENEZUMAB	Antibody	Beta amyloid A4 protein inhibitor	Binding agent	Alzheimer disease	Phase III	Terminated	3 references	
ADUCANUMAB	Antibody	Beta amyloid A4 protein binding agent	Binding agent	Alzheimer disease	Phase III	Recruiting	ClinicalTrials.gov	
LECANEMAB	Antibody	Beta amyloid A4 protein inhibitor	Binding agent	Alzheimer disease	Phase III	Active, not recruiting	ClinicalTrials.gov	
SOLANEZUMAB	Antibody	Beta amyloid A4 protein binding agent	Binding agent	Cognitive impairment	Phase III	Active, not recruiting	ClinicalTrials.gov	
BAPINEUZUMAB	Antibody	Beta amyloid A4 protein binding agent	Binding agent	Alzheimer disease	Phase III	Terminated	5 references	

Prioritisation indicator

No data

I Favourable Associations per page 50 👻 1–50 of 596

< >

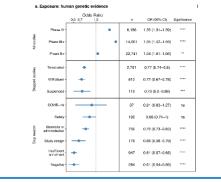
Drug Label Extraction

Ope

Targets Platform ADUCANUMAB ChemBL: CHEMBL 3039540	٩	Developed by the ChEMBL team to extract drug indications from FDA- approved drug labels in DailyMed						
Profile Description Antibody drug with a maximum clinical trial phase of IV that was first an disease. Molecule type: Antibody First approval: 2021 Max phase: Phase IV Status: @ Approved Synonyms: (Aducanumab) (Aducanumab avwa) (Aducanumab-avwa)	Indications		MAB curated from clinical trial records and post-marketing p	ckaae Inserts. Source: ChEM				
Known trade names: (Aduheim)	QSearch					Download table as JSON TSV API query		
MA Mechanisms of Action	Indication		Therapeutic Areas			Max Phase ψ Source		
B Bibliography	Alzheimer disease		2 areas		Phase IV 8 entries			
Mechanisms of Action ADUCANUMAB biochemical interactions to produce inter	CP Clinical Precedence Clinical trial records, including	curated indication and n	echanism of action for ADUCANUMAB. Source: ChEMBL.					
	QSearch					Download table as JSON TSV API query		
QSearch	Disease information	Target informati	on	Clinical trials inform	ation			
Mechanism of Action	Disease	Symbol	Name	Phase	Status	Source		
Beta amyloid A4 protein binding agent	Alzheimer disease	APP	amyloid beta precursor protein	Phase IV	N/A	FDA		
	Alzheimer disease	APP	amyloid beta precursor protein	Phase III	Recruiting	ClinicalTrials.gov		
	Alzheimer disease	APP	amyloid beta precursor protein	Phase III	Terminated	2 references		
	Alzheimer disease	APP	amyloid beta precursor protein	Phase III	Active, not recruiting	ClinicalTrials.gov		
	Alzheimer disease	APP	amyloid beta precursor protein	Phase I	Completed	3 references		
	Alzheimer disease	APP	amyloid beta precursor protein	Phase I	Terminated	ClinicalTrials.gov		
						Rows per page: 10 + 1-6 of 6 < >		

Open Targets

ML model to data mine drug labels


Why were Clinical trials terminated?

Phase \downarrow	Status	Start Date	Source
Phase IV	Terminated?	2018	ClinicalTrials.go
Phase IV	Terminated?	2009	ClinicalTrials.go
Phase IV	Study stop reason: Rofecoxib was withdraw market due to safety concerns.	n from the 2008	ClinicalTrials.go
Phase IV	Safety or side effects Insufficient er	nrollment 2009	ClinicalTrials.go
Phase IV		2004	ClinicalTrials.go
Phase IV	Terminated	2004	ClinicalTrials.go
Phase III	Terminated?	2015	ClinicalTrials.go
Phase III	Terminated?	2012	ClinicalTrials.go
Phase III	Terminated?	2006	ClinicalTrials.go
Phase III	Terminated?	2014	ClinicalTrials.go
	Rows per	page: 10 🗸	11-20 of 38 IK

Natural Language Processing (NLP) to classify why clinical trials were terminated

Nature Genetics - Accepted Why Clinical Trials Stop: The role of genetics

Olesya Razuvayevskaya, Irene Lopez, Ian Dunham and David Ochoa

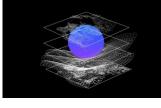
Example: SCN9A and Pain https://platform.opentargets.org/evidence/ENSG00000169432/EFO_0003843

Open Targets

Very Alzheimer disease EFO: MONDO_00004975 | MeSH: D000544 | UMLS: C0002395 | Orphanet: 238616 | NCIt: C2866

Associated Te	https://www.ebi.ac.uk/ProtVar/																					
QS	Chr.	Coordinate	o ID	C Ref.	GENON Alt	AIC Gene	Code (strar		CADD	Isoform	Protein name	PROTEI AA pos.	N AA change	Conse	quence(s)		NNOTATIONS			ProtVar resource izing human misser		
-	19	44908822	N/A	с	т	APOE	Cgc/Ug		26.0	can P02649 🛇	Apolipoprotein E	176	Arg/Cys	misse	nse	•	₩ ↑%			ntegrated prediction		
	S	Struc	tures										PE	DBe Expe	rimental S	Structure 📴		consequence of missense variation				
	CH	ick variant I ick white sp pen Target	bace to		out to v		nucture				● ● ■ ■ ₽	P02	A A A A A A A A A A B D D D D D D D D D	pos. 160 158 158 158 158 bhaFold F bhaFold F P02	Positi 176 teracting (Chain B 765	X-ray X-ray X-ray X-ray X-ray X-ray Structure C Structure C C C Reset	Alethod diffraction diffraction diffraction diffraction Pockets	s ir s	tability us teraction tructures ockets nature > nature struct Article Open access Towards a st interaction tr David F. Burke, Patrick. Wensi Zhu, Alistair S. D Alexander Leitner, Petrr Nature Structural & Me	and predicted bindin ural & molecular biology > articles > article Published: 23 January 2023 ructurally resolved human protect	orotein old ng :in	
			ise	ase/ph	nenoty	ype		Reporte	ed disea	se/phenotype			Put	blication			Study source	e Va	riant ID (RSID)	Variant Consequence		
			zh	eimer (diseas	se		Alzheim	ners dise	ase or family h	istory of Alzheim	ers dise	ase Sch	hwartzer	ntruber J	et al, 2021	GWAS Catal	og 19_	_44908822_C_T (rs7412)	VEP Missense variant QTL Decreased gene product lev	el ProtVar	
			Associ	0.1	0.3	0.4	0.6	0.7 0	1.9	No data										Associations per page 50 👻 1–50 of 10776	< >	

tion factors


U

Recruiting!

Recruiting!

Knowledge Extraction, **Representation**, & usage Project Leads: Barbara Zdrazil (EMBL-EBI), Sebastian Lobentanzer (UKHD)

Developing foundation models to analyse singlecell perturbation data Project Lead: Mo Lotfollahi (Sanger)

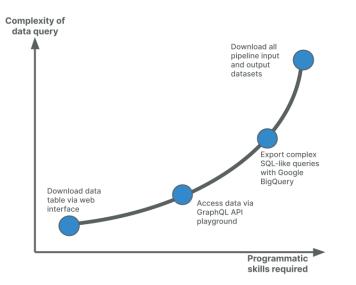
Recruiting!

areas of research interest

Some

Open Targets Al

Using AI for predicting combination targets in cancer Project Leads: Evangelia Petsalaki (EMBL-EBI) & Mathew Garnett (Sanger)



Digital Twins for disease modelling **Project Leads: Sheriff** Rahuman (EMBL-EBI) & Ellie McDonagh (EMBL-EBI/OT)

Exciting opportunities!: https://www.opentargets.org/jobs

How we enable AI

- Provide integrated, standardised, harmonised, open source data
- Cloud compatible (Google, AWS)

A few external examples:

- Han, Y. *et al.* Empowering the discovery of novel target-disease associations via machine learning approaches in the open targets platform. *BMC Bioinformatics* **23**, 232 (2022).
- Gogleva, A. *et al.* Knowledge graph-based recommendation framework identifies drivers of resistance in EGFR mutant non-small cell lung cancer. *Nat. Commun.* **13**, 1667 (2022).
- Ye, C., et al. Knowledge Graph-Enhanced Tensor Factorisation Model for Discovering Drug Targets. *IEEE/ACM Trans. Comput. Biol. Bioinform.* PP, (2022).
- Raies, A. et al. DrugnomeAl is an ensemble machine-learning framework for predicting druggability of candidate drug targets. Commun Biol 5, 1291 (2022).

How we harness AI

Enhancing automation and reducing manual curation time

Cloud compatible

Applying to scientific research questions

Enabling Therapeutic Hypothesis Generation For More Effective Disease Treatments

emcdonagh@ebi.ac.uk

