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Machine Learning Tools to Expedite Small Molecule Drug Design

Wet Assay Values
2.5M Values . Total assay values pulled
from Pfizer database

Curated Data Points
2.1M Datum Erroneous values, double

postings, commented data

Unique Structures
500K Structures : Data averaged across concorded
| structures

Models

22 Models Clearance, Safety, Properties,
- Pharmacokinetics

Models are rebuilt to include new lab data every 2 weeks 1 ~80 % of predictions within 2-fold
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The Use of Random Forests for Modeling a Variety of in vitro ADMET Endpoints

A framework for molecular property/activity prediction consisting of a Random
Forest model coupled with a custom set of descriptors has been found to be
very effective across a variety of endpoints, including kinetic solubility,
membrane permeability, metabolic stability, and dofetilide binding. Random
Forests[1] are bagged decision tree ensembles that are trained and applied
normally but for one exception: only a small, randomly selected subset of
descriptors are considered when selecting the best split at each node during
tree construction. The descriptors used here are all simple molecular
substructure or feature counts encoded as Daylight SMARTS queries. Some
mathematical properties of these RF-based models have been explored, including
the impact of descriptor and training set selection schemes, nearest neighbor
effects, etc. Additionally, examples will be given to demonstrate that the
effectiveness of this modeling paradigm compares favorably to a selection of
alternatives.




Our Global ADME/T Machine Learning Models are used ~ 6M / day

Model Row Count % Within 2-Fold
HHEP Clearance 92,944 74
HLM Clearance 393,826 76
RLM Clearance 118,201 75 . . . . .
RRCK (Pass. Perm) 265,074 7 *Design idea prioritization
NIH MDR (Pgp) ER 32,598 78
s 0 Monomer selection in Parallel
Fu, microsomes 7,845 87 . .
69 Medicinal Chemistry (PMC)
Rat Fu, plasma 8,030 69
Mouse Fu, plasma 4,013 67 .C I I t' f P K d D
Brain Fu, tissue 3,216 70 a Cu a Ion O a n Ose
Human Blood/Plasma 2,948 R?=0.45
Rat Blood/Plasma 1,742 R?=0.68
Human Vdss 1,271 62
Rat Vdss 2,341 61
SFLogD 212,234 R?=0.78
ELogD 83,277 R2=0.86
Kinetic Solubility 82,996 64
Dofetilide Ki 224,486 66
Herg IC50 12,963 60
THLE IC50 101,201 77
OATP1B1 Inh 11,450 R?=0.67
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Most of the effort for a new model is the curation of input data

*What assay data is available in the database?

*Are the data suitable?

* Replicate variability
« Comment Fields

* Posting errors

* Unit errors

*|f there are different assays for the same endpoint, can they be combined?
* Normalization of units of measurement
* Overlap
* Correlation

*|s the assay updated regularly with new data”?
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‘Classical’ machine learning methods: tree-based with descriptors

Instance
’ ;r\/ Saa. ﬁmdua} o \,pl\ E{emdual Y \p\\
O.W.0N 8.8 6.t .8 .6 .
60804040 608040460 60804540
Tree-1 Tree-2 Tree-3
‘ v
Result 1 Result 3
Sum

Final Result

*XGBoos
t

Cubist

HHEP Metrics Cubist DNN XGBoost

Y%within 2-Fold 64 60

Mean Fold Error 2.2 2.3
Pearson’s R 0.56 0.50
Spearman’s R 0.66 0.61
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63
2.1
0.59
0.70

Representation Descriptors
molecular weight: 194.2 u
CgH1oN402 number of heavy atoms: 14
e N/ number of rings: 2

logP(o/w): -0.604
MACCS keys: 65, 77

van der Waals volume: 175 A3
van der Waals surface area: 203 A2

Layer Atom types

0 Car
1 C.ar, N.2, N.am
2. C2. N.pl3;€C2.,€3.€C2




Confidence metrics significantly increased adoption of in silico models

ccccccc

« We generate an interpretable probability-based
confidence metric

 The score is calibrated via cross-validation to a
confidence metric that represents an expected
error probability

Count(Within 2 Fold)

» The confidence metric captures how close the test
compound is to its nearest neighbors in both
descriptor space and activity space

High
o E&\”fidence

Confidence

y = predicted value of test compound 2

2 — )2 | — tual value of ith neighbor in training set
N w2 —v) yi = ac f g r g
WRMSD = \/ —

N 2 =1
i=1 Wi Wi = hros

D = Manhattan Distance between test compound and ith neighbor

Predicted BCRP

Keefer et al (2013) dx.doi.org/10.1021/ci300554t N ‘ — .
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ML models, a computational ecosystem, and culture

Keys to Success

 Talent, expertise, and remit

» Global, authoritative,
standardized data repository

* Infrastructure for publishing,
executing, and deploying
models

= ,- — D) . 4 | Production Servers
- g N[ TSSO \ « Confidence scores

| yravs === L &  Sophisticated design culture

\ PCATASS ) K Protocol Publisher ) \ @Spotfire' | )
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ATtempting the same strategy for large molecules (mAbs) was
unsuccessful

Primary Leave-group-out validation
seqguence i
0.8 ,JJFJ
Generate features i 205 ’
Pre-specified set of Ce € o4
physchem properties 5
.02
0.0 AUC = 0.34
00 02 04 06 08 1.0

False positive rate

Traditional ML techniques failed to produce generalizable models
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We convert images into lower dimensional vector embeddings

INPUT

.

— CAR
— TRUCK
— VAN

o 18 15 O 1
JAFER RGN

7
E] D — BICYCLE

CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN COLUJEETED SOFTMAX

FEATURE LEARNING CLASSIFICATION

Extract intermediate hidden
layer as feature embedding
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Target-based assays Cell-based assays

Target-agnostic
Holistic view
More physiologically relevant
Target identification and
validation needed

Target-centric
Reductionist view
Validation in cell-based
assays needed
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Stimulus

N

N

Disease
Phenotype
Use knowledge of: Avoid:
Known MoA’s Structure-Based
Disease, Safety Triage

https://www.nature.com/articles/nchembio.2383

Vincent et al (2020) https://doi.org/10.1016/j.chembiol.2020.08.009


https://www.nature.com/articles/nchembio.2383

Can phenotypic changes of cellular components from compound
treatment be learned and associated with specific mechanisms of
action (MOAs) via deep learning?

» Screen compounds, use computer vision to determine
targets/MOAs

[ X S Measurements (Features
®e b‘-‘ " T i) 3 B ;g;) Y
o0 — - ~se= Pl e
~= ‘ { < O sl B EL"!%
% e == x 384 wells x N plates
T
Sanelic. of Experiments: n NRCIORCOpY Image analysis Morphological profiles
chemical multi-well imaging 9 y P B P
perturbations plates

» Cell Painting assay (Bray ef al, 2016)

*Reveals 8 broadly relevant cellular components or
organelles using 6 fluorescent dyes
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Chandrasekaran et al. Image-based profiling for drug discovery: due for a machine-learning upgrade? Nature Reviews Drug Discovery (2020).



Deep Learning can accurately classify 59 different multi-compound

MOAs

Model AUPRC=0.46
=== Random AUPRC=0.006

JUMP1: Classification PRC over 59 Classes

1.0 -

0.8 -

Precision
o
(@)

o
N
1

0.2

0.0 m======== 5 L
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Accuracy

1.0 -

0.8 -

o
@)]
1

o
N
1

0.2 -

0.0

JUMP1: Image Field Classification Accuracy over 59 Classes

51.2%
1.7%
__— T
Random Classifier MOAProfiler

Wong et al 2023 DOI: 10.1039/d3dd00060e



Our embeddings outperform existing methods for MOA class

assighment

Class Latent
Assignment

A

Leave-one-out >
compute aggregated class
embedding >

assign query to closest
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Score

E Fl
[ Precision
Recall

JUMP1: Class Latent Assignment Metrics

1.0 A

0.8 -

0.6 -

0.4

0.2 -

0.0

26%

1% 24% 23%

-

68%

62%

CellProfiler”

cell image analysis software

DeepProfiler

MOAProfiler



Case Study: Optimize a Domain of Trispecific Antibody
Internally developed Al tool delivers key physical property with speed
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Situation & Challenges Targeted

» Low antibody viscosity is critical for high dose, low
volume subcutaneous delivery and is easier to
manufacture

« Traditional viscosity optimization typically requires
multiple production / screening cycles

« Scarcity of training data prevented prior Al methods from
making accurate antibody viscosity predictions




Using electrostatic potential surface map as the only input to the 3D-CNN
prevents overfitting and enables these models to generalize

Generate features
Pre-specified set of
physchem properties

Homology model
/ crystal structure

Traditional ML model %N
. ) & 100 ® . R=-0.08
failed to generalize g . & & &
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False positive rate

Rai et al. (2023) https://doi.org/10.1038/s41598-023-28841-4



ML-Guided Antibody Viscosity Optimization was at Least 50%
Faster®

Al prediction correlated strongly with Bl Design il Production/ Screening [l Viscosity

measured viscosity of optimized mutants

2 g0, Afflnlty.Optlm.lzed Traditional B

3 o (Starting Point) Viscosity | M

2 | Affinity/Viscosity @ Optimization L

> 801 Optimized . : I
5 Viscosity ]
© 40 Misprediction

3 o

o

Z 207 ML-Guided N

5 Opt|m|zat|on __-

o . . .

™ o 50 100 150

Measured Viscosity

Prioritization of Antibody Mutants for Testing Eliminated Need for Multiple Production / Screening Cycles

épﬁl@l’ Worldwide Research, Development and Medical *Compared tO tradltlonal approaCh



" We are Leveraging Recent Advances in Language Modeling
Techniques to Support Large Molecule Discovery Efforts

« Recent advances in Al can be attributed to one
methodological breakthrough in deep learning:

Transformers
Attention Is All You Need

Go gle Research Published: 2017

Ashish Vaswani* Noam Shazeer” Niki Parmar” Jakob Uszkoreit”

Google Brain Google Brain Google Research Google Research

Prominent Transformer-based Al models

 Generative Pre-trained OpenAI
Transformer (GPT) ChatGPT
« AlphaFold2
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We use Transformers in predictive
modeling efforts for three tasks:

1. Antibody clearance

2. mMRNA design

3. mMAb immunogenicity risk
assessment

20



Non-specificity Predictions from minGPT based Models are being
used to Reduce mAb PK Risk in the Early Discovery Stage

. In. VIl‘I"O n.on-specn‘lc:lty endpoints correlate well . Adoption of advanced ML techniques have led to
with in vivo clearance (Avery et al., mAbs 2018) .
better prediction performance

[ T
LC minGPT trained on Train est
~25Kk Pfizer mAbs Output

* AC-SINS 11/2019 3/2021 11/2021

‘ L] L]
m) © ) - DNA-binding Test on antibodies from new portfolio projects
@ * Insulin-binding e

. | N STM
- st

» Our choice of ML techniques over time g0 J
- 3 =

o\ QON® WA

Input: AA seq

N

UL

»
¢

* Models have been integrated into the Pfizer
Random Forest Recurrent Transformer developability assessment workflow
(classical ML) Neural Net

INS

@Pﬁler Worldwide Research, Development and Medical An open-source implementation of GPT 21



Thanks to my Pfizer
colleagues

Chris Keefer
Daniel Wong
Brajesh Rai
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~ Transformer Models have been Developed to Identify Potential
Epitopes on Antibody Sequences

+ Therapeutic antibodies run the risk of being Predi.ction of HLA 1l allele-specific presehtation

recognized as foreign by a host immune system Transformer
[
ch !
v Peptides
ARy ¢
o o .0 Y
Lo v
APC
o

« Current immmunogenicity risk assessment relies on
peptide-HLA Il binding predictions Retrieval of true HLAZ2 presented peptides
« Trained on in vitro binding affinities

e
o

o
o)

Epitope prediction accuracy
(96 mADbs): 97%

« Recent publications have shown that peptide-HLA Il
presentation is a better predictor of immunogenicity

« Trained on MS immunopeptidomic data e

° Chen, Nat Biotechnol 2019, MAR'A, Stanford 09% 02 04 06 08 10

False Positive Rate

o
o

°
>

True Positive Rate

©
[N}
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A technique called Cell Painting could speed drug
discovery

A public-private consortium has released a huge collection of image-based cell profiles.

By Esther Landhuis

March 3,2023




Cell Painting provides phenotypic information about key cellular structures

Hoechst Alexa 488 Alexa 647 Alexa 568 Alexa long
33342 Endoplasmic Mitochondria Actin, Golgi Apparatus, Cytoplasmic
Nucleus Reticulum Plasma Membrane RNA

L X 3 t‘_‘

Measurements (Features)
S MY IR R

.. 2 ] L2 AT i, a ‘E:
28" dod ek e
.. 8 x 384 wells x N plates

Genetic or Experiments in Microscopy - : :
chegical multiowell imaging Image analysis Morphological profiles
perturbations plates



We aggregate individual image embeddings into well-level embeddings to
compare with CellProfiler and DeepProfiler

60
15 A
'S 8 . ) 40 .-~;-o.7“5".“"
) £\ & s’ e 10
R
. v 4 L AT s .
‘ = 3 R it aggregate into well-level
. . . s L et
Encode image fields via neural network g : . embeddings .
q 0 o v ',«-;:a,' 5 ) ,11\ q G 0
T ' A
o ran
-20 s »vb g
10 A
—-40
-0 -20 0 20 40 15 - ; . ; . , :
TSNE1 -10 =5 0TSNEl 5 10 15

Visualization of embeddings at the image level

Images
Trained
model
v LN l'\ |

CellProfiler” +- e

cell image analysis software '@ —

DeepProfiler

S
% Celllocations Single-cell
embeddings
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Model learns MOA-specific phenotypes amidst a diverse compound space

Compound Stratified Pearson Similarities

1.0 1

o o o
B (o)} [e0)
1 ] 1

Average Pairwise Pearson Similarity
o

N

1

0.0 -

Same Compound

é Pfizer

X

Same MOA

Different Compound
Same MOA

Jical

0.02
n=2.1E+06

1
Different Compound
Different MOA

TSNE2

MP Embeddings in TSNE Space
Colored by Perturbation
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Can we predict the MOA of held-out compounds never exposed to model training?

Same set up but hold out compounds instead of wells!

JUMP1: 266 compounds

/\

Randomly select 59 for held-out testing

Use trained model to derive well-level embeddings for
each well in the held-out test set

Aggregate well embeddings with
the same compound via median

ﬁ

Aggregated compound-
level embedding

1 1

Method 1 Individual Vote: use Method 2 Aggregated Vote:
these for predicting compound’s use this for predicting
MOA (majority vote) compound’s MOA

Well-level embeddings

Use remaining 207 for training

Exclude single-compound MOAs
(and corresponding compounds)

Use trained model to derive 59 MOA-level embeddings
from remaining 90 training compounds

MOA-level
embeddings

High-dimensional
- embedding space
e

Assign (green) compound to most

similar MOA class (yellow)



Conclusions

* Drug MOA determination via CellPainting phenotypes is possible!

 MOAProfiler is more performant for MOA determination than both the gold-standard CellProfiler and
DeepProfiler

» Approach generalizes to two different datasets and predicts the MOA of held-out compounds

°® e Messuraments (Featurss) MOA determination
(X '
“. { o RO - - S LGOS -
.. $ x 384 wells x N plates
Genetic or Experiments in Microscopy - . :
chesitical multi-well imaging Image analysis Morphological profiles
perturbations plates
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PfAbNet: Pfizer’s internally developed 3D CNN that predicts antibody viscosity

> °
2 o0
S e 0
© Y90 “John Lennon”
8 2 e i P
5 15
= @
INPUT FEATURE EXTRACTION OUTPUT
Flatten
5
Z - % . Viscosity
0 X X . .
g _ - ~ O Prediction
a ~
Electrostatic Potential 4

ép fizer  worduide Resare. Dovelopment and cic Rai et al. (2023) https://doi.org/10.1038/s41598-023-28841-4



,FGuided Optimization Delivering Antibodies in Less than Half the Time

INPUT OUTPUT
Targeted 3 charge patches CNN

for mutants Viscosity Prediction

128 Clones
Activity and polyreactivity

8 Clones

Viscosity @ ~150mg/ml

l High impact on viscosity

. .4 I Med. impact on viscosity
Viscosity curves Low impact on viscosity

FINAL LEAD
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3D-CNN model outperforms previous methods'#'° in viscosity prediction

From: Low-data interpretable deep learning prediction of antibody viscosity using a biophysically meaningful representation

Prediction (cP)
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nature > scientific reports > articles > article

1.01 B
AUC=0.84
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Article | Open Access | Published: 20 February 2023

False positive rate

Low-data interpretable deep learning prediction of
antibody viscosity using a biophysically meaningful

representation

Brajesh K. Rai &, James R. Apgar & Eric M. Bennett

Scientific Reports 13, Article number: 2917 (2023) \ Cite this article
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14. Agrawal, N. J. et al. Computational tool for the early screening of monoclonal antibodies
for their viscosities. MAbs 8, 43-48. https://doi.org/10.1080/19420862.2015.1099773

(2016).

15. Sharma, V. K. et al. In silico selection of therapeutic antibodies for development: Viscosity,
clearance, and chemical stability. Proc. Natl. Acad. Sci. 111,18601-18606 (2014).




Application of PfAbNet to a Trispecific Antibody

Al prediction correlated strongly with measured viscosity of optimized mutants

INPUT OUTPUT VALIDATION:
Targeted 3 charge PfAbNet One round of design delivered
patches for mutants Viscosity Prediction improved viscosity

801
Starting Point

60l Viscosity Optimized

40

N)

PfAbNet Predicted Viscosity

Viscosity
207 Misprediction
High impact on viscosit 0 L L L
. : Y 50 100 150

o

I Med. impact on viscosity

. o Measured Viscosity
Low impact on viscosity
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